求解扰动振子的三角拟合RKN方法及其高阶组合方法
Higher-order trigonometrically fitted RKN schemes via composition methods forsolving perturbedoscillators
基于Tocino等的修正Runge-Kutta-Nystrom (RKN)方法 ([Math. Comput. Model., (42) 2005]),本文探讨求解扰动振子y“+ω2y(t)=f(y(t)) 高效率的显式三角拟合RKN方法。将组合方法技术应用于三角拟合RKN方法,本文导出了一些高阶方法。与文献中已有的经典方法相比,数值试验结果表明本文的高阶显式三角拟合RKN方法更加有效。
his paper devotes to exploring efficient explicittrigonometrically fitted Runge-Kutta-Nystrom methods for theperturbed oscillators y“+ω2y(t)=f(y(t)) basedon the modified Runge-Kutta-Nystrom methods proposed by Tocinoet al. [Math. Comput. Model., (42) 2005]. Based on compositionmethods, some efficient explicit trigonometrically fitted RKNmethods are proposed. Numerical results demonstrate that ourhigher-order explicit trigonometrically fittedRunge-Kutta-Nystrom methods are more efficient than thewell-known methods in the scientific literature.
王斌、吴新元
数学力学
三角拟合RKN方法辛条件扰动振子组合方法
trigonometrically fittedRKN methodssymplecticity conditionsperturbed oscillatorscomposition methods
王斌,吴新元.求解扰动振子的三角拟合RKN方法及其高阶组合方法[EB/OL].(2013-02-28)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201302-504.点此复制
评论