L(p)空间倒向随机微分方程g-期望的性质
some properties of the g-expectation for backwards stochastic differential equations in L(p) space
本文在算子扩张的方法下说明了经典的g-期望可以连续地扩张到L(p)空间上(1 < p < 2),且该扩张关于生成元g是惟一的,给出了L(p)空间上倒向随机微分方程g-期望的表现形式.通过该g-期望,我们定义了相应的条件g-期望,证明了它的存在惟一性并给出了它的表现形式.利用生成元表示定理,g-期望惟一性定理及L(p)空间上倒向随机微分方程解的性质,我们研究L(p)空间上倒向随机微分方程g-期望及其条件g-期望,获得了L(p)空间上倒向随机微分方程g-期望惟一性定理,平移不变性定理及次可加定理,扩大了g-期望理论的应用范围.
In this paper, we show that the classical g-expectation can be extended to L^{p} space when 1<p<2,and its extension is unique about the generator, and give the representation of the g-expectation in L^{p} space. We define the related conditional g-expectation via the g-expectation, proof its existence and niqueness, and also give its representation. We use Represention Theorem, Uniqueness Theorem for g-expectation and some properties of L^{p} solutions of Backwards Stochastic Differential Equations to study the g-expectation (resp. conditional g-expectation), get the Uniqueness Theorem, Translation Invariance Theorem and Subadditivity Theorem for the g-expectation.
李莉、田德建、纪荣林、马海旭
数学
倒向随机微分方程g-期望L(p)空间上的g-期望
Backwards stochastic differential equationsg-expectationg-expectation in L^{p} space
李莉,田德建,纪荣林,马海旭.L(p)空间倒向随机微分方程g-期望的性质[EB/OL].(2008-09-10)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/200809-279.点此复制
评论