|国家预印本平台
首页|一种面向智能车联网的缺失数据估计新方法

一种面向智能车联网的缺失数据估计新方法

中文摘要英文摘要

智能车联网通过大量的地面传感器收集的数据来获得有关交通状况的信息,所收集的数据通常具有不规则的空间和时间分辨率,数据丢失是面对智能车联网中的一个常见问题。鉴于此,考虑了大型和多样化车联网中的缺失数据问题。通过在智能车联网中提取公共交通模式,比较了函数估计和张量分解等方法来估计这些缺失值的优劣后,提出了张量低秩近似估计新方法,该方法在缺失数据的情况下获得流量模式,得到大规模车联路网的低秩表示。通过不同的道路车联网实验测试,表明新方法的估计精度、数据集的偏差达到了较好的效果。

Intelligent Internet of Vehicle (IIOV) gathers relative traffic information by all kinds of on-ground sensors. The gathered data often include irregular spatial and temporal resolution, so losing data is a common problem of IIOV. In order to solve this problem, this paper proposed a kind of new approach of losing data evaluation for IIOV which was named tensor low-rank approximation(VBPCA) based on the extracting the common traffic pattern and comparing the function estimation & tensor decomposition. The approach can get the traffic patterns under the cases of losing data and the expression of low-rank. In the experiments to test the approach, it select about 1000 road segments to do the analysis. The results show that this approach has good performance on evaluation accuracy, the bias of the data set, so it is very useful for the application of intelligent internet of vehicle.

张德干、高瑾馨、张婷

10.12074/201808.00068V1

通信公路运输工程

车联网智能数据丢失估计偏差

张德干,高瑾馨,张婷.一种面向智能车联网的缺失数据估计新方法[EB/OL].(2018-08-13)[2025-08-24].https://chinaxiv.org/abs/201808.00068.点此复制

评论