基于卷积神经网络的中文自动问答研究
n Chinese Intelligent Question Answering System Based on Convolutional Neural Network
本文针对传统中文自动问答系统精度不高,处理稀疏数据效果不佳的问题,将一种深度学习算法应用到中文自动问答系统中。利用卷积神经网络的深度结构模型,计算知识库中实体意思与实体的语义相似性以及关系模式与关系的语义相似性。通过构建基于语义的卷积神经网络模型,我们对知识库中的关系三元组进行排序,并选取出得分最高的三元组作为最终的答案。该实验主要针对事实型问题,取得较好效果。
iming at solving the problems of poor performance in chinese questioning answering system when using traditional rule-based or machine learning algorithm, a new deepging learning model was proposed to deal with chinese question answering system in this paper. Using deep structure of convolutional neural network, we measure the similarity of entity mentions with entities in the knowledge base and the similarity of relation patterns and realtions in the knowledge base. We score relational triples in the knowledge base using these measures and select the top scoring relational triple to answering the question. In this paper, we focus on processing fact-based questions and our method achieves higher precision.
邢世样、张闯
计算技术、计算机技术自动化技术、自动化技术设备
计算机应用问答系统卷积神经网络余弦相似性
computer application technologyquestion answering systemconvolutional neural networkcosine similarity
邢世样,张闯.基于卷积神经网络的中文自动问答研究[EB/OL].(2016-09-30)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201609-292.点此复制
评论