|国家预印本平台
首页|Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking

Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking

Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking

来源:Arxiv_logoArxiv
英文摘要

Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection. Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis. Whereas, these methods can not well capture the changing information, feelings, or symptoms of the patient during dialogues. Moreover, no explicit framework has been explored to guide the dialogue, which results in some useless communications that affect the experience. In this paper, we propose to integrate Psychological State Tracking (POST) within the large language model (LLM) to explicitly guide depression-diagnosis-oriented chat. Specifically, the state is adapted from a psychological theoretical model, which consists of four components, namely Stage, Information, Summary and Next. We fine-tune an LLM model to generate the dynamic psychological state, which is further used to assist response generation at each turn to simulate the psychiatrist. Experimental results on the existing benchmark show that our proposed method boosts the performance of all subtasks in depression-diagnosis-oriented chat.

Liang He、Yiyang Gu、Yougen Zhou、Qin Chen、Ningning Zhou、Jie Zhou、Aimin Zhou

神经病学、精神病学医学研究方法

Liang He,Yiyang Gu,Yougen Zhou,Qin Chen,Ningning Zhou,Jie Zhou,Aimin Zhou.Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking[EB/OL].(2025-08-20)[2025-09-02].https://arxiv.org/abs/2403.09717.点此复制

评论