|国家预印本平台
首页|Curvature exponent of sub-Finsler Heisenberg groups

Curvature exponent of sub-Finsler Heisenberg groups

Curvature exponent of sub-Finsler Heisenberg groups

来源:Arxiv_logoArxiv
英文摘要

The curvature exponent $N_{\mathrm{curv}}$ of a metric measure space is the smallest number $N$ for which the measure contraction property $\mathsf{MCP}(0,N)$ holds. In this paper, we study the curvature exponent of sub-Finsler Heisenberg groups equipped with the Lebesgue measure. We prove that $N_{\mathrm{curv}} \geq 5$, and the equality holds if and only if the corresponding sub-Finsler Heisenberg group is actually sub-Riemannian. Furthermore, we show that for every $N\geq 5$, there is a sub-Finsler structure on the Heisenberg group such that $N_{\mathrm{curv}}=N$.

Samuël Borza、Mattia Magnabosco、Tommaso Rossi、Kenshiro Tashiro

10.1137/24M1690692

数学

Samuël Borza,Mattia Magnabosco,Tommaso Rossi,Kenshiro Tashiro.Curvature exponent of sub-Finsler Heisenberg groups[EB/OL].(2025-07-16)[2025-08-10].https://arxiv.org/abs/2407.14619.点此复制

评论