一类具有非局部条件的非线性分数阶微分方程耦合系统的正解
Positive solutions for coupled system of nonlinear fractional differential equations with nonlocal conditions
我们研究了一类具有积分边界条件且带有参数的非线性分数阶微分方程耦合系统的正解存在性。我们通过运用 Radu Precup 研究出的一个新的不动点定理,具有矢量的 Krasnosellskii 锥不动点定理,进行解决。同时我们还考虑了正解的局限性和多重性。
In this work, we study the existence of positive solutions for a nonlinear coupled system of Riemann-Liouville derivatives fractional differential equations with integral boundary value problems and a parameter. By means of a new fixed point theory due to Radu Precup, Krasnoselskii's cone fixed point theory of the vector version, we also investigate the localization and multiplicity of the positive solutions.
薛春艳、齐超凡
数学
分数阶微分方程系统黎曼-刘维尔导数Krasnoselskii不动点定理局限性和多重性正解
System of fractional differential equationsRiemann-Liouville derivativeKrasnoselskii's fixed point theoremLocalization and multiplicityPositive solutions
薛春艳,齐超凡.一类具有非局部条件的非线性分数阶微分方程耦合系统的正解[EB/OL].(2021-03-01)[2025-07-23].http://www.paper.edu.cn/releasepaper/content/202103-5.点此复制
评论