基于告警日志分析的移动网络故障预测
Mobile Network Fault Prediction Based on Alarm Log Analysis
在移动网络中,由各类设备生成的海量日志数据,是早于告警表征机器特性的语言。充分发挥日志的特点,对于告警日志与设备故障之间的关系进行深入的研究,能够做到提前预测网络设备运行故障。运用大数据技术和一些机器学习算法来实现日志挖掘分析和日志监控预警,以期通过日志异常事件的发现、根因预判、故障预警,将传统监控模式逐步转向"机器自监控为主,人工干预为辅",达到智能化、低故障率、提升感知的目的。通过导入测试集与训练结果进行对比验证,证明此方法是有效的。
In the mobile networks, those massive amount of log data generated by various types of devices is a language which earlier than themachine characteristics thatexpressed by alarms. Make full advantage of log data and take an intensive study of the relationship between the alarm logs and device failures, it will be able to predict network device operation failure in advance. Using big data technology and some Machine learning algorithms to implement log mining analysis and log monitoring warning, so it can gradually turn the traditional monitoring mode to "machine-based monitoring, supplemented by manual intervention" through the discovery of log anomalies,root cause prediction and failure warning, and then achieve the prupose of intelligent, low failure rateand enhance perception. Comparies experiments between Test set and training set show that this method is effective.
满毅、马晨
无线通信通信电子技术应用
通信与信息系统日志分析故障预测机器学习
ommunication and Information SystemLog analysisFault predictionMachine Learning
满毅,马晨.基于告警日志分析的移动网络故障预测[EB/OL].(2019-03-15)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201903-175.点此复制
评论