|国家预印本平台
首页|三正则图的反凯库勒数

三正则图的反凯库勒数

On the anti-Kelul'{e} number of cubic graphs

中文摘要英文摘要

一个连通图的反凯库勒数为去掉的最少的边数使得剩下的图依然连通但是没有完美匹配。这篇文章证明了三正则图的反凯库勒数为 3 或者 4。作为直接的应用,得到了硼氮富勒烯图,环面富勒烯图和克莱因瓶富勒烯图的反凯库勒数为 4,(3,6)-富勒烯图的反凯库勒数为 3。进一步表明了可以在多项式时间内找到一个三正则图的所有最小反凯库勒集。

he anti-Kekul'{e} numberof a connected graph $G$ is the smallest number of edges to be removed to create a connected subgraph without perfect matchings. In this article, weshow that the anti-Kekul'{e} number of a 2-connectedcubic graph is either 3 or 4, and the anti-Kekul'{e} numberof a connected cubic bipartite graph is always equal to 4.Direct application of these results shows that the anti-Kekul'{e} number of aboron-nitrogen fullerene, a toroidal fullerene and a Klein-bottle fullerene is 4, and the anti-Kekul'{e}number of a (3,6)-fullerene is 3. Moreover, we show that all the smallest anti-Kekul'{e} sets in a cubic graph can be found out in a polynomial time with respect to the order of the graph.

辛百桥、邵慰慈、李秋丽、叶东

数学化学晶体学

图论反凯库勒集反凯库勒数三正则图硼氮富勒烯(36)-富勒烯。

Graph Theory anti-Kelul'{e} set anti-Kelul'{e} number cubic graph boron-nitrogen fullerene $(36)$-fullerene.

辛百桥,邵慰慈,李秋丽,叶东.三正则图的反凯库勒数[EB/OL].(2016-07-27)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/201607-263.点此复制

评论