Adams 谱序列中乘积元素$widetilde{delta}_{s+4}widetilde l_{1}g_{0}$的收敛性
On Convergence of the Product $widetilde{delta}_{s+4}widetilde l_{1}g_{0}$ in the Adams Spectral Squences
摘要
本文将证明Adams 谱序列中${
mExt}_{mathcal{A}}^{s+9,t+s}(mathbb{Z}/p,mathbb{Z}/p)$的乘积元素$widetilde{delta}_{s+4}widetilde l_{1}g_{0}$的收敛性,其中$0leq sleq p-5$, $t=(s+3+(s+5)p+(s+4)p^{2}+(s+4)p^{3})q$, $q=2(p-1)$.Abstract
Abstract. In this paper we verifythe convergence of the product $widetilde{delta}_{s+4}widetilde l_{1}g_{0}in {
mExt}_{mathcal{A}}^{s+9,t+s}(mathbb{Z}/p,mathbb{Z}/p)$ in theAdams spectral sequences, where $pgeq 11$,$0leq sleq p-5$, and $t=(s+3+(s+5)p+(s+4)p^{2}+(s+4)p^{3})q$, $q=2(p-1)$. 关键词
球面稳定同伦群/Adams 谱序列/May 谱序列Key words
stable homotopy groups of spheres/Adams spectral sequence/May spectral sequence引用本文复制引用
俞海波,赵浩.Adams 谱序列中乘积元素$widetilde{delta}_{s+4}widetilde l_{1}g_{0}$的收敛性[EB/OL].(2017-05-04)[2025-12-13].http://www.paper.edu.cn/releasepaper/content/201705-309.学科分类
数学
评论