周期Riemann边值问题
PERIODIC RIEMANN BOUNDARY VALUE PROBLEMS
本文讨论了解在无穷远处可能无界条件下的周期函数边值问题求解.对于跳跃曲线是封闭曲线的周期边值问题,利用正切变换将在 $pminfty, i$ 处的奇点转化为在$pm i$处的极点,,再消去极性,将周期边值问题转化为经典Riemann边值问题。,,对于跳跃曲线是实轴的周期函数边值问题, 利用指数变换将$+infty ,i$和$-infty ,i$处的奇性分别转化成$0$和$infty$处的极性,然后消去在$0$处的极性,从而将周期边值问题转化为经典Riemann问题求解。
,,,,In this paper, theperiodic Riemann boundary value problems with the solutions allowed unbounded at $z=pminfty i$ is discussed. When the jump curve is a closed curve,by using the transformation $zeta= an{ rac {z} {a}}$, the singularities of the original problem at $z=pm infty{m i}$ become the poles at $zeta=pm ,i$, then removing the singularitythe periodic Riemann boundary value problem is transferred to the classical Riemann boundary value problem.,,When the jump curve is the real axis, by using the transformation $omega =e^{i z}$ the singularities of the solution for the periodic Riemann boundary value problem at $z=pminfty i$become the singularities for the poles at $omega=0$ and $omega=infty$, removing the singularity at $omega=0$, the periodic Riemann boundary value problem is also transferred into the Riemann boundary value Problem.
王小银、杜金元
数学
函数论Riemann边值问题周期Riemann边值问题极点变换
Function TheoryBoundary Value ProblemPeriodic Riemann Boundary Value ProblemPoleTransformation
王小银,杜金元.周期Riemann边值问题[EB/OL].(2014-03-21)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201403-664.点此复制
评论