|国家预印本平台
首页|基于改进QPSO算法的电动汽车模糊控制器参数优化

基于改进QPSO算法的电动汽车模糊控制器参数优化

中文摘要英文摘要

目前电动汽车常以直流无刷电机(BLDCM)作为驱动器,但BLDCM调速控制系统中模糊控制器的量化因子和比例因子采用传统方法自调节能力弱,针对该问题提出一种改进QPSO算法(AMF-QPSO)实现对量化因子和比例因子的自适应调节。AMF-QPSO算法以收缩—扩张系数(contraction expansion,CE)控制方式为研究重点,提出粒子活性概念,并以其作为反馈量,实现动态自适应调节CE系数。同时,为防止种群高度聚集,采用精英群体随机交叉学习机制,对部分活性低的精英粒子进行扰动,增强种群后期多样性。最后,通过LabVIEW实验平台,以具体案例验证AMF-QPSO算法性能。实验结果表明,AMF-QPSO优化的模糊PID控制器具有比标准模糊PID控制器和QPSO优化的模糊PID控制器更好的控制性和自适应性。

t present, electric vehicles often use DC brushless motor (BLDCM) as the driver, but the traditional method is difficult to design quantization factor and proportion factor of fuzzy controller in the BLDCM speed control system. An improved QPSO algorithm (AMF-QPSO) is proposed for the on-line tuning of the quantization factor and proportion factor. The AMF-QPSO algorithm takes the contraction-expansion coefficient (CE) control method as the research focus, proposes the particle activity concept, and uses it as the feedback quantity to realize the dynamic adaptive adjustment CE coefficient. At the same time, in order to prevent the high aggregation of the population, the elite group random cross learning mechanism is used to disturb some of the elite particles with low activity and enhance the diversity of the population in the later period. Finally, through the LabVIEW experimental platform, the performance of the AMF-QPSO algorithm is verified by a specific case. The experimental results show that the fuzzy PID controller optimized by AMF-QPSO has better control and adaptability than the standard fuzzy PID controller and the fuzzy PID controller optimized by QPSO.

周国鹏、金鹏、袁小平

10.12074/201810.00039V1

电机自动化技术、自动化技术设备

电动汽车直流无刷电机模糊控制器量子行为粒子群算法收缩—扩张系数

周国鹏,金鹏,袁小平.基于改进QPSO算法的电动汽车模糊控制器参数优化[EB/OL].(2018-10-11)[2025-08-16].https://chinaxiv.org/abs/201810.00039.点此复制

评论