在线分段时间序列流:一种有限自动机方法
Online Segmenting Time Series Streams: A Finite State Automata Method
分段是一种重要的时间序列挖掘手段。目前已有的时间序列数据分段方法多侧重于静态数据的分段,在时间序列流情形下的分段则需要进一步研究。提出了一种自适应的在线分段时间序列流的方法,根据时间序列流数据的变化情况,分析出数据流的状态,利用有限自动机进行建模,并根据所识别出的状态进行分段。在合成数据和实际数据上的大量实验表明,这种方法能够有效地对高速时间序列流进行分段,保证了分段的效果和质量。
Segmentation is one of the important tools to mine time series. Existing segmenting methods for time series mainly focus on the static data, and are infeasible under the circumstance of time series stream. A method for adaptively segmenting time series stream is proposed. The method employs finite state automata to analyze and extract the states of time series stream data, and the segmenting is performed according to the states. Extensive empirical experiments, both on synthetic and real datasets, show that the approach achieves great effectiveness on the high speed time series stream, and the quality of the segments is assured
李俊奎、王元珍
计算技术、计算机技术自动化基础理论
数据挖掘, 时间序列流, 流分段, 有限自动机
Data MiningTime Series StreamStream SegmentingFinite State Automata
李俊奎,王元珍.在线分段时间序列流:一种有限自动机方法[EB/OL].(2006-09-19)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200609-271.点此复制
评论