基于快速近邻传播的半监督社区发现算法
Fast Semi-supervised Affinity Propagation algorithm in community detection
针对大多数社区发现算法执行效率慢,且不能有效利用先验知识的问题,提出了一种基于快速近邻传播的半监督社区发现算法。首先该算法引进了成对点约束信息,根据 Must-link 和 Cannot-link 的约束信息,进行相似度矩阵的调整;其次,它根据AP算法模型-因子图模型中信息在节点间的传递规则,通过将相似度矩阵中相似度值为 0 的节点对直接聚为不同的类而提高时间效率。由于社会网络通常是一个大规模的稀疏网络,所以其在社区发现中能够提高算法的执行效率。将实验结果与其他算法进行比较,证明了本算法执行快,且能更加有效的利用先验知识来提高聚类性能。。
Nowadays time efficiency of most of the community detection algorithms is slow, and they can't make use of prior knowledge community effectively, we propose a Fast Semi-supervised Affinity Propagation community detection algorithm(FSAP). First, the algorithm has introduced the pair-wise constraints, Must-link and Cannot-link, to adjust the similarity matrix; Then, according to rule of information passing between the nodes based on the factor graph model of AP, it directly assigns the two nodes with 0 similarity to different cluster to improve time efficiency. Because social networks are usually large-scale sparse network, it has a great deal of pair-wise nodes with 0 similarity, so the algorithm can improve the efficiency in community detection. Compare with other algorithms, the experimental results demonstrate the algorithm has low time cost, and can use prior knowledge to improve the clustering performance effectively.
王淑靖、朱牧、孟凡荣、周勇
计算技术、计算机技术
社区发现近邻传播快速半监督
ommunity detectionAffinity PropagationFastSemi-supervised
王淑靖,朱牧,孟凡荣,周勇.基于快速近邻传播的半监督社区发现算法[EB/OL].(2014-11-14)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201411-210.点此复制
评论