守恒律方程的ALE-LDG方法
rbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws
本文构造了守恒律方程的ALE间断有限元方法。证明了该数值格式的单元熵条件,稳定性以及迎风数值流通量的最优收敛阶,单调流通量的次优收敛阶,和几何守恒律。
In this paper, we develop and analyze an arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) method with a time-dependent approximation space for one dimensional conservation laws, which satisfies the geometric conservation law.For the semi-discrete ALE-DG method, when applied to nonlinear scalar conservation laws, a cell entropy inequality, $mathrm{L}^{2}$ stability and error estimates are proven.More precisely, we prove the sub-optimal ($k+ rac{1}{2}$) convergence for monotone fluxes, and optimal ($k+1$) convergence for an upwind flux, when a piecewise $P^k$ polynomial approximation space is used.For the fully-discrete ALE-DG method, the geometric conservation law and the local maximum principle are proven.Moreover, we state conditions for slope limiters, which ensure total variation stability of the method.
夏银华
数学
守恒律方程 ALE-DG方法稳定性几何守恒律误差分析
rbitrary Lagrangian-Eulerian discontinuous Galerkin method hyperbolic conservation laws geometric conservation law cell entropy inequality error estimates maximum principle slope limiter conditions.
夏银华.守恒律方程的ALE-LDG方法[EB/OL].(2015-11-25)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201511-516.点此复制
评论