|国家预印本平台
首页|基于KLT的动态目标检测与状态估计

基于KLT的动态目标检测与状态估计

KLT-based Motion Detection and State Estimation

中文摘要英文摘要

运动目标的检测及其状态估计是计算机视觉领域的重要课题,并且广泛应用于移动机器人、无人机等移动平台。本文给出一种能在摄像机运动情况下检测动态目标并估计其状态的算法。具体而言,首先,基于KLT算法对图像进行变换,然后结合帧差法,提出了一种适用于摄像机运动的目标检测算法,其次,应用粒子滤波算法估计目标的运动状态,通过对目标进行运动学建模,并选取差分图像作为分析对象,同时结合目标检测算法来估计目标状态。实验结果表明,该算法能够有效地检测动态目标并对其进行状态估计,不会因目标部分被遮挡而失效。

Motion detection and state estimation is an important field of computer vision. It is also widely used in mobile robots, unmanned aerial vehicles and other mobile platforms. This thesis proposes a practical motion detection and state estimation algorithm which can be used in moving cameras.Firstly,we transform images based on KLT algorithm, then combine the frame difference algorithm, and create a motion detection algorithm that can be used for moving cameras.Secondly,we use particle filter to estimate the target's state. We model the target and choose the difference between two images as an analysis object, to develop a target's state estimation algorithm which make use of previous motion detection results.Experiments indicate that our method can detect the target and estimate its state in image sequences effectively even in occlusion situations

张葛、申辉、方勇纯、辛哲奎

计算技术、计算机技术自动化技术、自动化技术设备

图像处理目标检测状态估计KLT算法帧差法粒子滤波

Image ProcessingMotion detectionState EstimationKLT AlgorithmFrame DifferenceParticle Filter

张葛,申辉,方勇纯,辛哲奎.基于KLT的动态目标检测与状态估计[EB/OL].(2011-04-01)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201104-24.点此复制

评论