|国家预印本平台
首页|基于遗传算法优化BP神经网络的非线性环境建模

基于遗传算法优化BP神经网络的非线性环境建模

he nonlinear environment modeling of BP neural network is optimized based on genetic algorithm

中文摘要英文摘要

本文为研究基于遗传算法优化的BP神经网络构建非线性环境动力学模型,搭建了的单自由度力反馈遥操作实验平台及两种典型操作环境。首先分析了遗传算法和BP神经网络的各自特点并有效结合构建非线性环境模型。接着分析从端机器人运动状态信息、接触力信息、环境动力学参数间映射关系,提出级联神经网络结构。最后将构建模型应用于实验验证,并取得良好效果。为非线性环境建模技术在力反馈遥操作系统中的进一步研究提供理论参考。

In this paper, a nonlinear environment dynamics model for BP neural network based on genetic algorithm optimization is studied, and a single freedom feedback remote operation experimental platform with two typical operating environments are constructed.Firstly, the characteristics of genetic algorithm and BP neural network are analyzed and the nonlinear environment model is constructed.Then the relationship between the motion state information, contact force information and environmental dynamics parameters is analyzed and the cascade neural network structure is proposed.Finally, the model is applied to experimental verification and good results are obtained.This paper provides a theoretical reference for the further study of nonlinear environmental modeling technology in the force feedback remote operating system.

宋荆洲、尚志豪

自动化技术、自动化技术设备计算技术、计算机技术遥感技术

机器人控制神经网络环境建模

Robot ControlNeural networkEnvironment Model

宋荆洲,尚志豪.基于遗传算法优化BP神经网络的非线性环境建模[EB/OL].(2017-12-08)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201712-130.点此复制

评论