|国家预印本平台
首页|计算复对称张量US-特征对的拟牛顿法

计算复对称张量US-特征对的拟牛顿法

Quasi-Newton method for computing the US-eigenpairs of a complex symmetric tensor

中文摘要英文摘要

以量子纠缠为背景的复对称张量的US-特征对已经引起了很多注意。寻找复对称张量US-特征值的问题可以看成是复数域上的一个无约束非线性优化问题。这种问题的优化方法往往需要目标函数的一阶或二阶导数,然而,这些方法并不能直接应用到实值复变量函数,因为目标函数关于单个变量不一定解析。本文提出了计算一个复对称张量US-特征对的拟牛顿法,其中利用Wirtinger Calculus得到了定义在复数域上的实值函数的梯度。本文还证明了全局和超线性收敛性,数值实验也证明了这个方法是可行的。

US-eigenpairs of complex symmetric tensor has received much attention because of its background of quantum entanglement. The problem of finding US-eigenpairs can be regard as an unconstraint nonlinear optimization problem in complex number field. Optimization methods of this kind of problem often need a first- or second-order derivative of the objective function. However, such methods cannot be applied to real valued functions of complex variables because they are not necessarily analytic in their argument. In this paper, we present a quasi-Newton method for computing US-eigenpairs of a complex symmetric tensor, where we take advantage of Wirtinger Calculus to get the gradient of a real valued function defined on complex domain. The global and super-linear convergence of the method is verified. The numerical examples show the feasibility of the proposed method.

张仉辉、赵静、白敏茹

数学物理学

运筹学与控制论拟牛顿法复对称张量US-特征值Wirtinger导数

Operational Research and Cybernetics Quasi-Newton method complex symmetric tensor US-eigenpair Wirtinger Calculus

张仉辉,赵静,白敏茹.计算复对称张量US-特征对的拟牛顿法[EB/OL].(2016-04-13)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201604-142.点此复制

评论