|国家预印本平台
首页|Nodal-line semimetals from Weyl superlattices

Nodal-line semimetals from Weyl superlattices

Nodal-line semimetals from Weyl superlattices

来源:Arxiv_logoArxiv
英文摘要

The existence and topological classification of lower-dimensional Fermi surfaces is often tied to the crystal symmetries of the underlying lattice systems. Artificially engineered lattices, such as heterostructures and other superlattices, provide promising avenues to realize desired crystal symmetries that protect lower-dimensional Fermi surface, such as nodal lines. In this work, we investigate a Weyl semimetal subjected to spatially periodic onsite potential, giving rise to several phases, including a nodal-line semimetal phase. In contrast to proposals that purely focus on lattice symmetries, the emergence of the nodal line in this setup does not require small spin-orbit coupling, but rather relies on its presence. We show that the stability of the nodal line is understood from reflection symmetry and a combination of a fractional lattice translation and charge-conjugation symmetry. Depending on the choice of parameters, this model exhibits drumhead surface states that are exponentially localized at the surface, or weakly localized surface states that decay into the bulk at all energies.

Jun-Won Rhim、Jens H. Bardarson、Adolfo G. Grushin、Jan Behrends、Shang Liu

10.1103/PhysRevB.96.245101

物理学晶体学

Jun-Won Rhim,Jens H. Bardarson,Adolfo G. Grushin,Jan Behrends,Shang Liu.Nodal-line semimetals from Weyl superlattices[EB/OL].(2017-08-03)[2025-08-02].https://arxiv.org/abs/1708.01086.点此复制

评论