|国家预印本平台
首页|Local convergence of the Levenberg-Marquardt method under H\"{o}lder metric subregularity

Local convergence of the Levenberg-Marquardt method under H\"{o}lder metric subregularity

Local convergence of the Levenberg-Marquardt method under H\"{o}lder metric subregularity

来源:Arxiv_logoArxiv
英文摘要

We describe and analyse Levenberg-Marquardt methods for solving systems of nonlinear equations. More specifically, we propose an adaptive formula for the Levenberg-Marquardt parameter and analyse the local convergence of the method under H\"{o}lder metric subregularity of the function defining the equation and H\"older continuity of its gradient mapping. Further, we analyse the local convergence of the method under the additional assumption that the \L{}ojasiewicz gradient inequality holds. We finally report encouraging numerical results confirming the theoretical findings for the problem of computing moiety conserved steady states in biochemical reaction networks. This problem can be cast as finding a solution of a system of nonlinear equations, where the associated mapping satisfies the \L{}ojasiewicz gradient inequality assumption.

Masoud Ahookhosh、Ronan M. T. Fleming、Francisco J. Arag¨?n Artacho、Phan T. Vuong

数学

Masoud Ahookhosh,Ronan M. T. Fleming,Francisco J. Arag¨?n Artacho,Phan T. Vuong.Local convergence of the Levenberg-Marquardt method under H\"{o}lder metric subregularity[EB/OL].(2017-03-21)[2025-08-24].https://arxiv.org/abs/1703.07461.点此复制

评论