结合视觉显著模型与水平集算法的建筑物立面图像轮廓快速提取
针对传统轮廓提取方法对建筑物立面图像处理存在的处理耗时问题,提出一种结合视觉显著模型与水平集算法的建筑物立面轮廓提取算法。首先,通过视觉显著特征与超像素分块信息滤除大量无关背景;其次,对所得的显著分块,以超像素分块为单位,据建筑物的纹理特征进行筛选;最后,利用水平集算法对所得初始建筑物区域进行演化,得到最终轮廓。实验结果表明,较传统轮廓提取方法,在处理效果相当的情况下本算法处理速度得到有效提升。
iming at the time-consuming problem of traditional contour extraction method in building facade image processing, a building elevation contour extraction algorithm combined with visual saliency model and level set algorithm is proposed. First of all, using visual salient features and super pixel information to filter out the irrelevant background; secondly, it selects the significant blocks according to the buildings texture feature, with each super pixel block as a processing unit; finally, using the level set algorithm optimizes the resulting building area to obtain the final contour. The experimental results show that the processing speed of the proposed algorithm is effectively improved when the processing effect is equivalent, compared with the traditional contour extraction method.
李昌华、周方晓、杜文强
建筑基础科学建筑设计
轮廓提取建筑物立面显著模型水平集
李昌华,周方晓,杜文强.结合视觉显著模型与水平集算法的建筑物立面图像轮廓快速提取[EB/OL].(2018-04-19)[2025-08-16].https://chinaxiv.org/abs/201804.02024.点此复制
评论