|国家预印本平台
首页|图神经网络及其变体研究综述

图神经网络及其变体研究综述

Comprehensive Survey on GNN and Its Variants

中文摘要英文摘要

通过对几篇论文的详细阅读与理解,我完成了本篇综述论文的撰写,并对图神经网络GNN及其部分变体,包括图卷积网络GCN、图采样神经网络GraphSAGE、注意力图神经网络GAT、图循环网络GGNN和图循环神经网络HGNN模型的基本概念、核心结构和应用领域进行了深入分析与全面研究,总结了这些论文作者的研究方法和他们研发的模型所实现的功能及应用,并给出了自己对于GNN未来的发展与研究方向的理解。

hrough a detailed reading and understanding of several papers, I have completed the writing of this review paper. I conducted in-depth analysis and comprehensive research on the fundamental concepts, core structures, and applications of Graph Neural Networks (GNN) and some of its variants, including Graph Convolutional Networks (GCN), GraphSAGE (Graph Sample and Aggregation), Graph Attention Networks (GAT), Graph Gated Neural Networks (GGNN), and Hierarchical Graph Neural Networks (HGNN) . The paper summarizes the research methods employed by the authors and provides insights into the functionalities and applications realized by the models they developed. Additionally, I present my understanding of the future development and research directions of GNN.

10.12074/202401.00034V1

计算技术、计算机技术

机器学习深度学习图神经网络

Machine Learningeep LearningGraph Nerual Network

.图神经网络及其变体研究综述[EB/OL].(2024-01-04)[2025-08-02].https://chinaxiv.org/abs/202401.00034.点此复制

评论