|国家预印本平台
首页|基于难样本挖掘的孪生网络目标跟踪

基于难样本挖掘的孪生网络目标跟踪

中文摘要英文摘要

为了解决全卷积孪生网络目标跟踪算法(SiamFC)在复杂环境下容易出现跟踪漂移甚至跟踪失败的问题,提出了一种基于难样本挖掘的孪生网络目标跟踪方法。该方法在SiamFC算法的基础上,首先利用特征融合模块进行特征融合,以提高特征表征的鲁棒性,然后引入一个新的损失函数,加强网络对难样本的学习能力并缓解正负样本不平衡的问题。为验证该方法的有效性,在OTB2015和GOT10k数据集上对算法进行测试实验。实验结果表明,在OTB2015数据集上该方法比SiamFC算法在成功率上提高2.6%,精度上提高2%在GOT10k数据集上该方法的mAO为0.429,相比SiamFC算法提高了3.7%,在光照变化、目标形变、相似背景干扰情况下具有更好的表现。

In complex environment, the object tracking algorithm of fully-convolutional siamese network is prone to track drift or even track failure. In order to solve the problem, this paper proposed a siamese network tracking algorithm based on hard sample mining. On the basis of SiamFC, this method first used a feature fusion module for feature fusion to enhance the robustness of feature representation, and then proposed a novel loss function to strengthen the learning ability of network to hard samples and alleviate the problem of imbalance between positive and negative samples. To verify the validity, this method was tested on OTB2015 benchmark and GOT10k dataset. The results of OTB2015 show that this method increases the success rate by 2.6% and the accuracy by 2% compared with SiamFC. On the GOT10k dataset, the mAO of this method is 0.429, which is 3.7% higher than the SiamFC. It illustrates that this method has a better performance in the case of illumination variation, object deformation, and similar background interference.

亢洁、沈钧戈、孙阳

10.12074/202009.00060V1

电子技术应用

孪生网络目标跟踪特征融合损失函数难样本挖掘

亢洁,沈钧戈,孙阳.基于难样本挖掘的孪生网络目标跟踪[EB/OL].(2020-09-28)[2025-04-26].https://chinaxiv.org/abs/202009.00060.点此复制

评论