基于连接函数的二元极值Copula的矩估计
Moments-type Estimation of Bivariate Extreme Value Copulas Based on Link Functions
本文研究了二元极值Copula的矩估计问题。通常极值Copula可以由一个Pickands相依函数表示,因此本文基于连接函数针对Pickands相依函数提出一种二元极值Copula的矩估计方法,该方法可以看作是现有非参数估计方法的一个推广。文章通过数值模拟给出了该方法的有限样本性质。同时,本文还应用了参数方法和矩估计方法分析了两个不同位置的最大周末车速数据。
his paper considers the moments-type estimation of bivariate extreme value copulas. Usually the inference on an extreme value copulaproceeds via its Pickands dependence function. In this paper a new estimation method for the Pickands dependence function is proposed based on link functions, which can be treated as an extension of the existing nonparametric estimates. The finite sample performance is investigated by simulation studies, and the maximum weekend car speed data registered at two given locationsis analyzed via parametric method and our proposed method.
黄超、林金官
数学
二元极值copulaPickands相依函数连接函数普通最小二乘法
Bivariate extreme value copulaPickands dependence functionLink functionOrdinary least squares.
黄超,林金官.基于连接函数的二元极值Copula的矩估计[EB/OL].(2013-05-10)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201305-135.点此复制
评论