基于空间变换网络的对抗样本防御方法
Neo Adversarial Examples Defense Method \\Through Spatial Transformer Networks
近年来,深度神经网络在图像识别任务中达到了很高的准确率。然而,深度神经网络被证明易受到对抗样本的攻击。本文提出了一种空间变换防御方法来防御对抗样本。该方法在分类模型之前添加一个空间变换网络,空间变换网络利用注意机制提取分类模型感兴趣的区域,并将其转换到另一个向量空间。这种空间变换在保留了原始图像基本结构信息的同时减轻了对抗扰动的影响。实验证明,所提出的空间变换方法可以有效地防御单步和迭代攻击。将该方法与对抗训练后的模型相结合,可以更好地抵御单步攻击。将该方法与随机化防御方法相结合,可以在完全白盒的攻击场景下取得更好的防御效果。
In recent years, deep neural networks (DNNs) have achieved high accuracy in image recognition tasks. However, they have been demonstrated to be vulnerable to adversarial examples. This work proposes a spatial transformation defense method to defend adversarial examples. The method is to add spatial transformer networks (STNs) before the classification model. The STNs utilize the attention mechanism to extract the area of interest of the classification model and transform it to another vector space. Spatial transformation maintains the basic structure information of the original images while mitigates the effect of adversarial perturbations. The experiments prove that the proposed spatial transformation method is effective at defending against both single-step and iterative attacks. Combining the proposed method with an adversarially trained model achieves better defense effect against single-step attacks, while combining the proposed method with the randomization defense method achieves better defense effect under completely white box scenario.
张冬梅、李鹏博
计算技术、计算机技术
人工智能深度学习对抗样本空间变换网络
rtificial Intelligenceeep Learningdversarial ExamplesSpatial Transformer Networks
张冬梅,李鹏博.基于空间变换网络的对抗样本防御方法[EB/OL].(2022-03-24)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/202203-366.点此复制
评论