|国家预印本平台
首页|基于改进分水岭算法的车辆监控视频图像分割

基于改进分水岭算法的车辆监控视频图像分割

Vehicle Monitoring Video Image SegmentationBased on Improving Watershed Algorithm

中文摘要英文摘要

本文提出了一种基于形态学的分水岭改进算法,利用形态学开、闭重建算法对图像进行降噪处理,结合韦伯感知原理,对形态学梯度图像进行灰度等级的非线性划分,使用非线性划分的梯度图像进行分水岭标记。解决了传统分水岭算法过分割以及分水岭标记之前的噪声与目标细密纹理的抑制问题。并利用这一方法,对车辆监控视频中的目标图像进行提取,简化了传统视频图像分割的步骤,提高了图像分割的精度。

his article proposes an improved Watershed Algorithm based on morphological, using Morphological Open and Close Reconstruction to reduce the noise of image. Besides, with the Weber perception principle, it devised the morphological gradient image in the form of gray scale non-linear and marked the gradient image with Watershed Algorithm. So it solved the over-segmentation problem of traditional Watershed Algorithm and the suppression problem of noise and fine-grained before watershed mark. By the above method, the target image can be extracted from Vehicle surveillance video, which simplifies the steps of traditional image segmentation, and improve the accuracy of image segmentation.

申永军、魏新宽

电子技术应用

形态测地膨胀梯度计算韦伯感知原理分水岭标记

Geodesic DilationGradient ComputationWeber perception principleWatershed Mark

申永军,魏新宽.基于改进分水岭算法的车辆监控视频图像分割[EB/OL].(2012-03-26)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201203-721.点此复制

评论