基于排列熵和支持向量机的癫痫发作预测研究
针对癫痫发作给病人带来的巨大伤害,为临床治疗留下足够空余时间,提出一个可以预测癫痫发作的系统模型。对21名癫痫病人进行研究,提取具有较低算法复杂度的排列熵构成特征向量,将其输入支持向量机(support vector machine,SVM)训练出学习模型,用来识别发作期样本,利用投票机制充分考虑病人差异来判断所处状态,最终实现癫痫的实时预测。结果表明,其中81%的发作可以提前平均50多分钟预测到,且具有较低的误报率。为癫痫发作预测系统的理论研究打下坚实基础。
iming at the great harm caused by epileptic seizures for patients and leave enough spare time for clinical treatment, the study put forword a system which can predict the seizure in advance for people with epileptic. This method based on 21 epileptic patients and extracted permutation entropy as a feature vector which has lower algorithm complexity. Then the vector was input into the support vector machine (SVM) to train a learning model and identify the ictal samples. Taking full account of patient differences, it used voting mechanism to determine the patient's state. Finally, the method realized a real-time prediction for epileptic. The results show that this method can predict 81% of the seizures with more than 50 minutes before the onset of epilepsy, and it has a low false alarm rate. The method provides a solid foundation for theoretical research of seizure prediction system.
曹锐、相洁、周梦妮、阎鹏飞、崔会芳、王彬
神经病学、精神病学医学研究方法计算技术、计算机技术
癫痫排列熵支持向量机预测
曹锐,相洁,周梦妮,阎鹏飞,崔会芳,王彬.基于排列熵和支持向量机的癫痫发作预测研究[EB/OL].(2018-04-12)[2025-08-02].https://chinaxiv.org/abs/201804.01431.点此复制
评论