|国家预印本平台
首页|基于改进的动态因果模型量化生理模型的效应连通性

基于改进的动态因果模型量化生理模型的效应连通性

haracterization of Effective Connectivity in Physiology-based Model via Modified Dynamic Causal Model

中文摘要英文摘要

本文提出了一种新的策略-改进的动态因果模型算法(MDCM)用于确定大脑海马区域内不同神经元集群之间的因果关系,并且基于生理模型用于仿真癫痫患者发作时的脑电活动。MDCM包括三个部分:首先,将生理模型用状态空间模型表示,通过计算该状态空间模型的传递函数得到理论的功率谱密度函数(PSD)。其次,根据记录到的颅内脑电信号(iEEG),计算出测量的PSD,通过期望最大化算法估计出模型参数和估计的PSD。最后,根据拟合的阈值来重新确定估计的参数,通过模型比较选择最优的模型-最有可能产生仿真数据的模型。实验仿真结果表明:在单向连通性情况下,MDCM比DCM算法效果更优。

his paper proposes a new strategy named Modified Dynamic Causal Modelling (MDCM) to detect effective connectivity in an underlying physiology based model aimed at simulating epileptic activities in the hippocampus. The MDCM consists of three parts considering a state-space environment. First of all, an analytical form of the power spectral densities (PSD) as a function of the model parameters is obtained by calculating the transition matrix of the state-space linearized model. Secondly, the PSD are measured from the observed intracerebral electroencephalographic (iEEG) signals, and then the model parameters are estimated by an Expectation Maximum (EM) algorithm. Thirdly, a new estimation of the parameters is obtained using an iterative algorithm and another estimation of the PSD is derived, the most plausible model being finally selected among a set of candidate models. Simulated experimental results indicate that the proposed MDCM outperforms DCM in scenarios of unidirectional flow propagation.

伍家松、LE BOUQUIN JEANNES Régine、向文涛、舒华忠、杨淳沨

生理学生物科学研究方法、生物科学研究技术生物物理学

癫痫生理模型颅内脑电图改进的动态因果模型效应连通性

epilepsyphysiology based modeliEEGMDCMeffective connectivity

伍家松,LE BOUQUIN JEANNES Régine,向文涛,舒华忠,杨淳沨.基于改进的动态因果模型量化生理模型的效应连通性[EB/OL].(2015-12-01)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201512-68.点此复制

评论