|国家预印本平台
首页|WeSSRD:一个弱监督的垃圾邮件检测框架

WeSSRD:一个弱监督的垃圾邮件检测框架

WeSSRD: A weakly supervised app store spam reviews detection framework

中文摘要英文摘要

随着智能手机的普及,应用市场中提供了大量应用供用户下载使用,同时应用商店也允许下载了应用的用户对此应用发布评分与评论。这些评分是其它用户决定是否从应用商店下载此应用的主要依据,也是一个开发者获取用户反馈的重要途经之一。但是,大量的无意义评论(或称之为垃圾评论)严重危害着应用商店的正常生态,也是目前应用市场亟待解决的问题之一。本文提出了一个弱监督的应用商店垃圾评论检测框架WESSRD,此框架可以通过一种基于主题建模的无监督方法自动挖掘评论与应用的相关性,然后再加入极少量的先验知识训练一个弱监督检测器来检测应用下的垃圾评论。我们再一个包含14,052条评论的真实数据集上对此框架进行了实验测试,通过我们框架训练得到的检测器能够在测试集上达到80.97%的精准率以及81.89%的召回率,远高于目前常用的基于相似度的不相关评论检测方法。

With the popularity of smartphones, a large number of apps have emerged in app store for users to download.Most app stores allow users who download an app to post reviews and ratings on this app. These reviews are not only a major factor in determining the ranking of an app, but also a major reference for users in choosing whether to download the app, and an important way for developers to get feedback from users.However, a large number of meaningless reviews (or called spam reviews) have severely damaged the normal ecology of the app store and are one of the urgent problems to be solved in maintaining the regular order of the mobile app market. This paper proposes a weakly supervised spam detection framework called WeSSRD. It can mine app reviews for relevance to the app itself by unsupervised topic modeling methods and then train a weakly supervised detector to detect spam in application stores using a minimal amount of prior knowledge.We tested this framework on a real dataset with 14,052 reviews. The detector trained by our proposed framework can achieve a precision rate of 80.97% and a recall rate of 81.89% on the test set, far exceeding the detection method based on similarity.

蔺岩、徐国胜、李思怡、徐国爱、郭燕慧

计算技术、计算机技术

计算机应用应用市场评论垃圾评论应用市场弱监督学习主题模型

computer application spam reviews app store weakly supervised learning topic model

蔺岩,徐国胜,李思怡,徐国爱,郭燕慧.WeSSRD:一个弱监督的垃圾邮件检测框架[EB/OL].(2022-03-01)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202203-10.点此复制

评论