|国家预印本平台
首页|基于差分隐私的Slope One协同过滤推荐算法

基于差分隐私的Slope One协同过滤推荐算法

Slope One collaborative filtering algorithm based on differential privacy

中文摘要英文摘要

Slope One算法是一种简洁高效且推荐精度高的协同过滤推荐算法,然而其很难提供一个严格的隐私保证。潜在攻击者可以通过观察用户的推荐结果,盗取用户的评分记录,这将对用户的隐私造成极大威胁。针对此问题,提出一种满足差分隐私保护的DP-Slope One协同过滤推荐算法。首先,构建用户-项目评分相似矩阵,然后采用Laplace噪声机制对用户-项目评分相似矩阵进行扰动,使其满足差分隐私模型。最后,在真实数据集上进行验证,实验结果证明基于差分隐私保护的DP-Slope One推荐算法能够在保证推荐精度的基础上保护用户隐私。

The Slope One algorithm is a collaborative filtering recommendation algorithm that is simple, efficient, and highly recommended. However, it is difficult to provide a strict privacy guarantee. The potential attacker can steal the user\'s rating record by observing the user\'s recommendation result, which will pose a great threat to the user\'s privacy. To solve this problem, a DP-Slope One collaborative filtering recommendation algorithm that satisfies differential privacy protection is proposed. First, construct a user-item rating similarity matrix, and then use the Laplace noise mechanism to perturb the user-item rating similarity matrix to satisfy the differential privacy model. Finally, it is verified on the real data set. Experimental results show that the DP-Slope One recommendation algorithm based on differential privacy protection can protect user privacy based on the recommendation accuracy.

何杰、吴响、王辉、毋文敏

计算技术、计算机技术

差分隐私推荐系统协同过滤Slope One推荐

differential privacyrecommender systemcollaborative filtering algorithmSlope One recommend

何杰,吴响,王辉,毋文敏.基于差分隐私的Slope One协同过滤推荐算法[EB/OL].(2018-07-05)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201807-16.点此复制

评论