|国家预印本平台
首页|基于神经网络预测器的图神经网络架构搜索

基于神经网络预测器的图神经网络架构搜索

Graph Neural Architecture Search Based on Neural Predictor

中文摘要英文摘要

神经架构搜索(NAS)已证明在为视觉或语言建模任务发现有前途的架构方面取得了成功,并且最近也被引入到搜索图神经网络(GNN)中。尽管取得了初步成功,但搜索策略效率有待提高。本文将神经网络架构搜索中的神经网络预测器(Neural predictor)的搜索策略引入到GNN架构搜索中,首先生成拓扑结构的图神经网络架构,对其架构节点以及边的特征进行设计,最后用异质的图嵌入方法得到架构嵌入,预测其准确率。在多个不同种类、规模的图数据集上以节点分类的下游任务进行了实验,效果证明有显著的提升。

Neural Architecture Search (NAS) has proven successful in discovering promising architectures for vision or language modeling tasks, and was also recently introduced to search Graph Neural Networks (GNNs). Despite initial success, the search strategy efficiency needs to be improved. In this paper, the search strategy of the neural network predictor (Neural predictor) in the neural network architecture search is introduced into the GNN architecture search. Qualitative graph embedding methods get architectural embeddings and predict their accuracy. Experiments have been carried out on multiple graph data sets of different types and scales with node classification downstream tasks, and the results have proved to be significantly improved.

王柏、孟新凯

计算技术、计算机技术

神经网络架构搜索图神经网络神经网络预测器

neural architecture searchgraph neural networkneural predictor

王柏,孟新凯.基于神经网络预测器的图神经网络架构搜索[EB/OL].(2022-12-05)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202212-13.点此复制

评论