极限拟跟踪性质
On the limit quasi-shadowing property
本文主要研究微分同胚的极限拟跟踪性质。证明了任何拟部分双曲伪轨${x_{i},n_{i}}_{iin mathbb{Z}}$都存在一列点${y_{k}}_{kin mathbb{Z}}$能够$mathcal{L}^p$-拟跟踪,极限拟跟踪,渐近拟跟踪这条伪轨。另外,对于动态一致性的部分双曲同胚的系统也有$mathcal{L}^p$-拟跟踪,极限拟跟踪,渐近拟跟踪性质。
he paper study the limit quasi-shadowing property for diffeomorphisms.This paper prove that any quasi-partially hyperbolic pseudoorbit ${x_{i},n_{i}}_{iin mathbb{Z}}$ can be $mathcal{L}^p$-, limit and asymptotic quasi-shadowed by a points sequence ${y_{k}}_{kin mathbb{Z}}$.Moreover, this paper also investigate the $mathcal{L}^p$-, limit and asymptotic quasi-shadowing properties for partially hyperbolic diffeomorphisms which are dynamically coherent.
周云华、张芳
数学
动力系统极限拟跟踪性拟部分双曲伪轨部分双曲性
dynamical systemlimit quasi-shadowingquasi-partially hyperbolic pseudoorbitpartial hyperbolicity
周云华,张芳.极限拟跟踪性质[EB/OL].(2015-04-17)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201504-288.点此复制
评论