The Navier-Stokes equations in the critical Lebesgue space
The Navier-Stokes equations in the critical Lebesgue space
We study regularity criteria for the $d$-dimensional incompressible Navier-Stokes equations. We prove in this paper that if $u\in L_\infty^tL_{d}^x((0,T)\times {\mathbb R}^d)$ is a Leray-Hopf weak solution, then $u$ is smooth and unique in $(0,T)\times \bR^d$. This generalizes a result by Escauriaza, Seregin and \v{S}ver\'ak. Additionally, we show that if $T=\infty$ then $u$ goes to zero as $t$ goes to infinity.
Dapeng Du、Hongjie Dong
数学力学
Dapeng Du,Hongjie Dong.The Navier-Stokes equations in the critical Lebesgue space[EB/OL].(2009-03-08)[2025-08-02].https://arxiv.org/abs/0903.1461.点此复制
评论