|国家预印本平台
首页|The Navier-Stokes equations in the critical Lebesgue space

The Navier-Stokes equations in the critical Lebesgue space

The Navier-Stokes equations in the critical Lebesgue space

来源:Arxiv_logoArxiv
英文摘要

We study regularity criteria for the $d$-dimensional incompressible Navier-Stokes equations. We prove in this paper that if $u\in L_\infty^tL_{d}^x((0,T)\times {\mathbb R}^d)$ is a Leray-Hopf weak solution, then $u$ is smooth and unique in $(0,T)\times \bR^d$. This generalizes a result by Escauriaza, Seregin and \v{S}ver\'ak. Additionally, we show that if $T=\infty$ then $u$ goes to zero as $t$ goes to infinity.

Dapeng Du、Hongjie Dong

10.1007/s00220-009-0852-y

数学力学

Dapeng Du,Hongjie Dong.The Navier-Stokes equations in the critical Lebesgue space[EB/OL].(2009-03-08)[2025-08-02].https://arxiv.org/abs/0903.1461.点此复制

评论