高校图书馆的个性化图书推荐系统应用研究
Research on Personalized Book Recommendations oriented University Library
数字图书馆已经成为广大高校大力推广的信息化工程,在该工程中,通过推荐系统为用户提供个性化的服务是该领域中研究的热点问题。本文针对目前个性化推荐系统中仍然存在的关系建模、数据稀疏等问题开展研究。提出面向高校图书馆的个性化图书推荐系统框架,对用户之间、图书之间的同质性关系,用户和图书之间的异质关系进行建模,进而尽可能解决数据的稀疏性问题。推荐系统采用正交非负矩阵三分解实现联合聚类算法,确保解的唯一性和可解释性。联合聚类算法同时对用户和图书进行聚类分析,进而提高聚类的准确性。通过历史数据的对比分析,本文提出的推荐算法在准确性方面有了较为明显的提高。
igital libraries have become the majority of colleges and universities to promote the information technology projects, in this project, through the recommendation system to provide users with personalized service is the hot issue in the field of research. Aiming at the personalized recommendation system still exist in the relationship modeling, data sparse research and other issues. Proposed for the university library books, personalized recommendation system framework for users, books homogeneity relationship between the user and book modeling the relationship between heterogeneity and thus possible to solve the problem of data sparsity. Recommended system uses three orthogonal non-negative matrix decomposition algorithm for joint clustering to ensure the uniqueness of solution and interpretability. Joint clustering algorithm and books simultaneously to users of cluster analysis, thus improving the accuracy of clustering. Through comparative analysis of historical data, the proposed recommendation algorithm with the accuracy of the more obvious increase.
闫相斌、于海涛
教育信息传播、知识传播计算技术、计算机技术
个性化推荐联合聚类数据稀疏
personalized recommendationsjoint clusteringsparse data
闫相斌,于海涛.高校图书馆的个性化图书推荐系统应用研究[EB/OL].(2013-11-07)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201311-121.点此复制
评论