基于BP神经网络的陕西省城市科技创新能力评价研究
he Evaluation of Shaanxi Cities'Scientific and technological Innovation Capablity Based on BP Neural Network
从创新基础与支撑能力、技术产业化能力和品牌创新能力三个维度构建了陕西省城市科技创新能力评价的指标体系,并运用嵌套BP神经网络方法,对陕西省内各城市科技创新能力进行了实证评价,得出了陕西省区域内十个城市科技创新能力的排序。结论表明:陕西省各城市科技创新能力存在较大的差距,关中最强,陕北次之,陕南最弱。文章进一步剖析了陕西各城市在科技创新能力所处排序次位的深层原因,并在此基础上给出了关中、陕北、陕南三大区域提升创新能力的具体措施:关中地区要优化产业结构,提高资源利用效率,加快成果转化机制建设;陕北地区要大力发展第三产业,促进产业转型与升级;陕南地区要在政策上对高新技术产业倾斜,切实改善创新环境。
nalyzed the evaluation of technological innovation capability in Shaanxi province using nested BP neural network method, this paper builds the evaluation index system of science and technology innovation ability in Shaanxi Province from three dimensions of innovation foundation and support ability, technology industrialization ability and brand innovation to get the technology innovation ranking of ten Cities in Shaanxi province.The empirical results show that: there is a big gap in the scientific and technological innovation capacity of the cities in Shaanxi Province, the strongest in the Central Shaanxi, the second in the northern Shaanxi and the weakest in the southern Shaanxi. The paper further analyzes the deep reasons of the Shaanxi Times Ranking of each city in the scientific and technological innovation ability, puting forward the concrete measures of three areas(Central, North and South Shaanxi)to improve the ability of innovation: optimizing the industrial structure in the Central Shaanxi , improving resource utilization efficiency, accelerating the transformation of mechanism construction in the northern Shaanxi ; promoting the transformation of the third industry; inclining to the high-tech industry in the policy in southern Shaanxi , and improving the innovation environment.
贾栋、陈晨、李朋林
科学、科学研究
科技创新能力评价BP神经网络陕西省
scientific and technological innovation capablityevaluationBP neural networkShaanxi province
贾栋,陈晨,李朋林.基于BP神经网络的陕西省城市科技创新能力评价研究[EB/OL].(2017-07-14)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201707-49.点此复制
评论