|国家预印本平台
首页|GPS出行调查中信息自动提取研究进展

GPS出行调查中信息自动提取研究进展

utomated Extraction of Activity Information from GPS Travel Survey: A Review

中文摘要英文摘要

出行/活动调查的传统方法依赖于人的主观记忆,长期存在着受访者负担大和调查精度低两大问题,GPS调查方法利用计算设备自动记录出行轨迹,实现了调查手段的变革。该方法能否得到推广,关键在于能否实现轨迹中出行信息的自动化提取。行程端点、交通方式和出行目的是出行信息中的基本要素,目前的提取方法主要分为经验性方法和机器学习算法两大类。本文总结了从低层次的GPS轨迹数据到高层次的出行语义信息转换的关键环节,比较了各种提取方法的优缺点,认为不依赖于经验的、不依赖于辅助数据的学习算法具有较大的推广价值,但需要借鉴经验方法的成果对其进行改进,并提出在将来的研究中将三项要素的提取过程结合起来或可显著提高精度。

onventional household travel survey methods rely on respondents' memory for travel information, which is prone to trip underreporting, time inaccuracy and physical and mental fatigue of respondents. The GPS based survey method is a logical solution to these problems, but its widespread application largely depends on the automation of travel information extraction from the GPS trajectories. This paper reviews and summarizes currently available computer methods for deriving trip ends, trip purpose and travel mode from GPS data. Comparative analyses of these methods indicated that AI-based learning algorithms are best suitable for processing the GPS trajectories with no supplementary data. However, they need to be further improved through referencing empirically-based methods and integrating steps for deriving all three trip elements.

季民河、张治华、邓中伟

交通运输经济自动化技术经济自动化技术、自动化技术设备

被动式GPS出行/活动调查行程端点交通方式出行目的

passive GPStravel survey methodOD matrixtrvael modetrip purpose

季民河,张治华,邓中伟.GPS出行调查中信息自动提取研究进展[EB/OL].(2011-01-05)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201101-252.点此复制

评论