一维非定常对流扩散方程的新型差分方法
New finite difference methods for 1D unsteady convection-diffusion equations
文章旨在构造了一种新型的有限差分方法来求解一维非定常的对流扩散方程。首先,本文通过基变换将非定常的对流扩散方程转化为非定常的反应扩散方程;再结合反应扩散方程和泰勒展开来得到空间方向上的差分格式;最后综合向量变换、泰勒展开以及(1,1)型的帕德逼近方法来进一步得到了本文形式上更加简单的新型有限差分方法。两个例子的数值结果均表明,本文格式的空间收敛阶同传统的克兰克-尼科尔森方法相比高2阶,而随着空间步长的减小,甚至可达到4阶;时间收敛阶是2阶,随着时间步长的减小,效果也要比克兰克-尼科尔森方法好。数值结果同时也验证了该差分格式的精度更高、得到的结果更加有效可靠,当然收敛的速度也更快。
his paper is intended to construct a new kind of finite difference method to solve one dimensional unsteady convection-diffusion equation. First of all, by the base transformation, the unsteady convection-diffusion equation is converted into unsteady reaction-diffusion equation; Secondly, the difference scheme on the spatial direction is obtained by combining the reaction diffusion equation and Taylor expansion; Finally, a new finite difference method with simple form is obtained in this paper by combining vector transform, Taylor expansion and (1,1) Padé approximant. Numerical results of the two examples show that, spatial convergence order in this paper is 2-order higher than the traditional Crank-Nicolson method, and can even reach 4-order convergence with the decrease of space step; Time convergence order is 2 order, it's also better than Crank Nicolson method with the decrease of time step. The numerical results also verify that the difference scheme proposed in this paper has higher accuracy, more effective and reliable results and faster convergence speed.
王红月、王坤
数学
偏微分方程数值解非定常对流扩散方程有限差分方法帕德逼近
Numerical method for PDEUnsteadyConvection-diffusion equationFinite difference methodPadé approximant
王红月,王坤.一维非定常对流扩散方程的新型差分方法[EB/OL].(2017-03-20)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201703-246.点此复制
评论