|国家预印本平台
首页|广义变系数KdV方程的可积性质研究

广义变系数KdV方程的可积性质研究

Integrable properties for a generalized nonisospectral and variable-coefficient Korteweg-de Vries model

中文摘要英文摘要

通过Hirota双线性方法,本文解析地研究了可应用于流体力学与等离子体中的广义变系数KdV方程。经过一个因变量变换,本文将广义变系数KdV方程的双线化。基于其双线性形式,本文得到了此方程的如N孤子型解,Bäcklund 变换和Lax对等可积性质。此外,还将双线性形式的Bäcklund转换为了用原变量表示的一般形式的Bäcklund。

pplicable in fluid dynamics and plasmas, a generalized variable-coefficient Korteweg-de Vries (vcKdV) equation is investigated analytically employing the Hirota bilinear method in this paper. The bilinear form for such a model is derived through a dependent variable transformation. Based on the bilinear form, the integrable properties such as the N-solitonic solution, the Bäcklund transformation and the Lax pair for the vcKdV equation are obtained. Additionally, it is shown that the bilinear Bäcklund transformation can turn into the one denoted in the original variables.

孟祥花、许晓革、高以天

数学物理学

Hirota双线性方法广义变系数KdV方程N孤子型解B&aumlcklund 变换Lax对

Hirota bilinear methodGeneralized nonisospectral and variable-coefficient Korteweg-de Vries equationN-solitonic solutionB&aumlcklund transformationLax pair

孟祥花,许晓革,高以天.广义变系数KdV方程的可积性质研究[EB/OL].(2008-09-22)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200809-613.点此复制

评论