基于SDN的流量异常检测与预测算法
raffic Anomaly Detection and Prediction Based on SDN
基于SPE和EWMA算法,设计了一个可以应用于真实SDN网络场景的多功能流量监控算法L-EWMA.算法实现实时检测网络异常并根据异常流量场景(Alpha、DDoS和Node Loss)的特点自动判断异常流量类型。与其他SDN异常流量检测算法相比,L-EWMA增加了异常流量的定位和流量预测功能,经过实验证明,L-EWMA可以较为准确的分析异常场景,定位与预测流量变化。通过该算法,技术人员可以全面掌握流量异常时的网络情况,并做出准确判断。
Based on SPE and EWMA algorithm, a multi-function traffic monitoring algorithm L-EWMA which can be applied to real SDN network scene is designed. The algorithm archives real-time detection of network anomaly and automatically judges according to the characteristics of abnormal traffic types(Alpha, DDoS and Node Loss). Compared with other SDN anomaly traffic detection algorithms, this system adds the functions of abnormal traffic location and prediction analysis. Experiments show that L-EWMA have high accuracies in analysis abnormal scenes, location and prediction flow change. Through this algorithm, the technicians can fully control the traffic situation of the network and make accurate judgments.
蒋韵、杨帆
通信
通信与信息系统SDN异常流量PCAL-EWMA
communication and information systemSDNabnormal trafficPCAL-EWMA
蒋韵,杨帆.基于SDN的流量异常检测与预测算法[EB/OL].(2017-11-17)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201711-82.点此复制
评论