|国家预印本平台
首页|基于进化算法的自动调参方法

基于进化算法的自动调参方法

n automatic parameter adjustment method based on evolutionary algorithm

中文摘要英文摘要

无论是机器学习领域还是非机器学习领域,模型的参数选取是模型效果好坏的关键因素。对于非连续或可微的函数,参数优化通常基于三种方法:网格搜索、随机搜索、贝叶斯优化。其中随机搜索和贝叶斯优化应用最为广泛。然而在某些场景下(尤其是模型在线上一直接收数据的情况下),我们需要短期内快速调整参数以便模型继续工作,而随机搜索在短时间内没有搜索到符合条件的值,贝叶斯搜索也无法迭代充分,这导致短时间内获取到的参数效果不佳。为了在短期内尽快获取到合适的参数,本文采用多线程贝叶斯来并行调参。再基于进化算法,采用"优胜劣汰"的思想,在迭代中的线程设置检查点,到达检查点且优化效果不好的优化进程放弃自身参数,拷贝效果更好的进程参数,添加噪声后继续迭代,从而将线程资源集中在更优秀的参数上,进而获取模型的最优参数。本文的研究工作在相同时间内获取到了更好的参数,对于参数自动优化方向具有一定参考价值。

Whether in the field of machine learning or non machine learning, the selection of model parameters is the key factor of the model result. Optimization of super parameter for discontinuous or differentiable functions is usually based on three methods: grid search, random search and Bayesian optimization. Among them, random search and Bayesian optimization are the most widely used.However, in some situation(especially when the model is receiving data online), we need to quickly adjust the parameters in a short time so that the model can continue to work. However, random search sometimes can not find the qualified value in a short time, and the Bayesian search can not iterate fully, which leads to the poor effect of the parameters obtained in a short time. In order to get the right parameters as soon as possible in a short time, this paper uses multi-threaded Bayesian to adjust parameters in parallel. Then, based on evolutionary algorithm, we use the idea of "survival of the fittest", set checkpointsin these iteration threads. When the checkpoints are reached and the optimization process with poor optimization effect gives up its own parameters, copies the process parameters with better result, and adds noise to continue the iterationto concentrate thread resourceson better parameters.The research work of this paper obtains better parameters in the same time, which has a certain reference value for the direction of automatic parameter optimization.

刘传昌、刘成畅

计算技术、计算机技术

计算机应用技术进化算法贝叶斯优化

omputer application technologyEvolutionary algorithmBayesian optimization

刘传昌,刘成畅.基于进化算法的自动调参方法[EB/OL].(2021-02-23)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202102-63.点此复制

评论