|国家预印本平台
首页|基于银行信用卡客户信用的实证研究

基于银行信用卡客户信用的实证研究

Empirical Study on Credit Card Customers

中文摘要英文摘要

近年来,我国商业银行大力开拓信用卡业务市场,随之而来的信用卡的推广和使用将会带来一系列的信用风险问题。本文尝试使用支持向量机(SVM)来研究信用卡客户的信用评价,利用三种常用的核函数建立相应的SVM模型,最终得出基于径向基核函数的SVM模型为最优。利用该模型对银行信用卡客户进行分类,区分出"好"客户和"坏"客户,将有利于银行针对不同人群采取相应措施来降低信用风险。

In recent years, China's commercial banks vigorously explore the credit card business market, while the promotion and use of credit cards will bring a range of credit risk. This paper attempts to use the support vector machine to study the evaluation of credit card users. Three common kernels are used to establish the SVM model, and we ultimately conclude that the SVM model based on radial basis kernel is optimal. Using this model, bank credit card customers are classified, distinguishing between "good" customers and "bad" customers. This will help banks to take appropriate measures for different people to reduce credit risk.

韩兆洲、潘树颖

财政、金融计算技术、计算机技术

核函数支持向量机模式识别客户信用

Kernel functionsupport vector machinepattern recognitioncustomer credit

韩兆洲,潘树颖.基于银行信用卡客户信用的实证研究[EB/OL].(2011-04-20)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201104-451.点此复制

评论