|国家预印本平台
首页|基于多权值的 Slope One 协同过滤算法*

基于多权值的 Slope One 协同过滤算法*

中文摘要

【目的】针对 Slope One 算法未考虑项目相似性、项目属性和对目标用户已有评分同等考虑进而导致推荐准确度降低的问题进行改进。【方法】提出一种基于改进的项目相似性度量、改进的项目属性相似性度量和用户评分概率函数的多权值的Slope One协同过滤算法, 在项目相似性度量方面将共同评价的两个项目的用户数量和Pearson 相关系数相融合, 在项目属性相似性度量方面将修正的拉普拉斯平滑与 Jaccard 系数相结合, 同时利用用户评分概率函数对用户已有评分进行有效区分。【结果】实验结果表明, 本文方法相比于原 Slope One 算法, MAE值下降了 5.4%, 能够获得更好的推荐准确度。【局限】只关注推荐系统中用户对项目产生的评分, 并没有关注用户对项目给出的评论, 在一定程度上影响了推荐效果。【结论】本文方法更能适应评分数据稀疏性, 有效提高了推荐系统的推荐质量。

王荣波、黄孝喜、覃幸新、谌志群

10.12074/201712.01400V1

计算技术、计算机技术

协同过滤Slope One多权值项目相似性项目属性

王荣波,黄孝喜,覃幸新,谌志群.基于多权值的 Slope One 协同过滤算法*[EB/OL].(2017-12-05)[2025-08-21].https://chinaxiv.org/abs/201712.01400.点此复制

评论