一类具有时滞的SIRS的传染病模型的稳定性分析和hopf分支
Stability and Hopf Bifurcation of a SIRS Epidemic Model with Time Delay
本文研究了一类具有时滞的SIRS的传染病模型.通过分析特征方程,运用Hurwitz判断定理,讨论了该模型正平衡点的局部稳定性,并得到了Hopf分支的存在性;通过构造适当的 Liapunov函数,讨论了该模型的地方病平衡点和无病平衡点全局稳定性的充要条件.当时滞不存在时,讨论了无病平衡点的全局指数稳定性.
SIRS epidemic model with time delay is discussed by analyzing the characteristic equation, the local stability of the endemic equilibrium of the system is discussed and the existence of a Hopf bifurcation at the positive equilibrium is established. By using Lyapunov functions and the LaSalle invariant principle, the global stability of each feasible equilibria of the model is discussed. When the time delay is disappeared, global exponential asymptotically stability of the disease-free equilibrium is discussed.
朱春娟、孙宇锋
数学
传染病模型时滞Hopf分支Liapunov函数稳定性
epidemic modeltime delayHopf bifurcationLyapunov functionstability
朱春娟,孙宇锋.一类具有时滞的SIRS的传染病模型的稳定性分析和hopf分支[EB/OL].(2015-03-24)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201503-312.点此复制
评论