基于DCGAN的可见光与红外图像融合算法研究
Research on Fusion Algorithm of Visible and Infrared Image Based on DCGAN
现有可见光与红外图像融合算法在融合阶段必须输入配准的可见光-红外图像对,在很多场景下,这一要求是非常严苛的。本文提出了一种基于DCGAN的可见光与红外图像融合算法,通过生成网络和判别网络的对抗训练,以及专门设计的纹理损失函数的约束,使得生成网络能够直接根据红外图像生成融合图像。在FLIR数据集上进行了实验,实验结果表明使用本算法得到的融合图像能够较好地结合可见光图像的色彩特征和红外图像的纹理特征,并且生成融合图像的速度较快,可以满足一些实时性应用。
he existing visible and infrared image fusion algorithms require the registered visible-infrared image pair in the fusion stage. In many scenarios, this requirement is very strict. In this paper, a DCGAN-based visible and infrared image fusion algorithm is proposed. Through the adversarial training of the generation network and the discriminant network, and the constraints of the specially designed texture loss function, the generation network can directly generate fusion images from infrared images. Experiments were conducted on the FLIR data set. The experimental results show that the fusion images obtained using this algorithm can well combine the color characteristics of visible images and the texture characteristics of infrared images, and the speed of generating fusion images is very fast, which can meet some real-time requirements application.
乔媛媛、姜明贤
光电子技术电子技术应用遥感技术
人工智能图像融合生成对抗网络
artificial intelligenceimage fusiongenerative adversarial networks
乔媛媛,姜明贤.基于DCGAN的可见光与红外图像融合算法研究[EB/OL].(2021-03-03)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202103-43.点此复制
评论