基于深度学习的癫痫脑电数据的处理方法
Processing Method of Epileptic EEG Data Based on Deep Learning
在机器学习飞速发展的今天,深度学习在医学领域的应用变得越来越重要,而脑电数据作为诊断和分析治疗癫痫疾病的重要依据,其在深度学习中的应用是非常重要的。如何对癫痫脑电数据进行合适的处理是使用深度学习技术去解决癫痫疾病的诊断和癫痫发作预测问题的关键。对于已经存在的有效的脑电数据处理方法对其进行实验和研究来探究其中的原理和不足,同时根据数据特征、神经网络模型等原理知识以及之前方法中存在中的不足进行改进并尝试从其他角度去寻找更加可行有效的数据处理方法。
With the rapid development of machine learning, the application of deep learning in the medical field is becoming more and more important. As an important basis for diagnosis and treatment of epilepsy, EEG data is very important in deep learning. How to process the epileptic EEG data properly is the key to solve the problem of epilepsy diagnosis and epileptic seizure prediction using deep learning technology. For the existing effective EEG data processing methods, experiments and research are carried out to explore the principles and shortcomings. At the same time, according to the data characteristics, neural network model and other principle knowledge, as well as the shortcomings of the previous methods, we try to find a more feasible and effective data processing method from other angles.
姬哨晗、雷友珣
神经病学、精神病学计算技术、计算机技术医学研究方法
癫痫脑电数据处理深度学习图像信号
epliepsyEEGdata processingeep learningimagesignal
姬哨晗,雷友珣.基于深度学习的癫痫脑电数据的处理方法[EB/OL].(2020-12-30)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202012-123.点此复制
评论