|国家预印本平台
首页|一类具有饱和迁移率的时滞捕食-食饵生物控制模型

一类具有饱和迁移率的时滞捕食-食饵生物控制模型

Delayed Predator Prey Model with Saturation Migration Rate in Biological Control

中文摘要英文摘要

本文研究了一类捕食者具有饱和迁移率的捕食-食饵生物控制模型的动力学性质. 由于捕食者的捕食行为对其数量的变化有滞后效应,所以该模型是一个时滞微分方程组. 首先研究了该系统平衡点的存在性和稳定性;接着以时滞为参数, 分析~Hopf 分支存在的充分条件;利用中心流形定理和正规型理论给出确定~Hopf~分支周期解方向和稳定性的计算公式;最后对于理论结果给出了相应的数值模拟.

In this paper, we establish a delayed predator prey model with saturation predator migration rate and analyze global dynamical behavior of this model. Because of the delay effectof predations on the variation of predator's biomass, this model is formulated as a system of delayed differentialequations. The existence and stability of equilibria are studied. Sufficient conditions areobtained which ensures that Hopf bifurcation occurs when the delay is regarded as a bifurcationparameter. By applying the center manifold theorem and normal form theory, computational formula are derived for the direction and stability of Hopf bifurcating periodic solutions. Some numerical simulations illustratethe theoretical results.

郭志明、 段全恒

生物科学研究方法、生物科学研究技术

时滞微分系统饱和迁移率稳定性Hopf分支.

elayed differential systemsaturation migration ratestabilityHopf bifurcation

郭志明, 段全恒.一类具有饱和迁移率的时滞捕食-食饵生物控制模型[EB/OL].(2016-05-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201605-151.点此复制

评论