|国家预印本平台
首页|一个基于信息熵和水平集方法的噪声图像分割模型

一个基于信息熵和水平集方法的噪声图像分割模型

Noisy Image Segmentation Model Based on Information Entropy and Level Set

中文摘要英文摘要

水平集分割模型是图像分割领域的热门方法,但是许多模型对噪声和初始活动轮廓的位置比较敏感。针对这些问题,本文基于信息熵理论提出了一个新的结合图像全局和局部信息的分割模型。模型基于对图像灰度的高斯分布拟合,使用全局和局部分布的信息熵度量图像在全局和局部区域的内部差异性,并使用它们之间的相对熵度量全局与局部之间的差异性。模型通过梯度下降法最小化所得能量泛函,驱使演化曲线向目标边界移动并实现图像分割。最后,本文在多幅合成图像和真实图像上进行了实验,并将其与几个具有代表性的模型进行对比,实验结果表明模型对噪声和初始轮廓具有更好的鲁棒性。

Variational level set methods(VLSMs)have been widely usedin the field of image segmentation, but many models are sensitive to noise and the initialization of active contour. To address these issues, a new VLSMcombiningthe global and local imageinformation is proposed in this paper,based on information entropy theory. The proposed model is based on the Gaussian distribution fitting of the gray level of the image, which utilizes the information entropy of the global and local distribution to measure the internal difference of the image in the corresponding regions, and uses the relative entropy between them to measure the difference between the global and local regions. The resulting energy functional is minimized by gradientdescent, which controls the evolution curve to move towards the target boundary and eventually achievesimage segmentation. Compared to some representativeVLSMs, the proposed method yields better robustness to noise and initial contours.

向亮、李东

计算技术、计算机技术

图像分割活动轮廓水平集函数信息熵

Image segmentationactive contour modellevel set methodinformation entropy

向亮,李东.一个基于信息熵和水平集方法的噪声图像分割模型[EB/OL].(2023-03-17)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202303-204.点此复制

评论