用BP神经网络进行系统辨识的红外图像超分辨力复原方法
SUPER-RESOLUTION OF BLURRED INFRARED IMAGES USING THE BLUR PARAMETERS IDENTIFICATION ON THE NEURAL NETWORK
由于受到光学系统衍射限和像元尺寸的影响,红外热像仪获取图像的分辨力不高,难以满足实际应用的更高要求。超分辨力图像复原算法可以对退化图像进行处理,使其复原接近没有退化前的理想图像,主要分为以下几个类型:Bayes分析法、基于集合理论的方法、频率域的方法等。以上这些方法均要求系统点扩散函数已知或可精确估计。本文提出一种利用BP神经网络对红外图像进行系统辨识的新方法。认为红外系统的调制传递函数近似为高斯型。通过数学分析证明了用神经网络对包含刀口靶的红外图像进行系统辨识的可行性。利用神经网络的辨识结果,选取基于Markov约束的Poisson-MAP图像超分辨力复原算法(MPMAP)对同一热像仪拍摄的红外图像进行复原。实验结果表明,复原图像中包含更多的高频成分,可以实现超分辨力观测。
mages acquired from an infrared (IR) sensor typically suffer from poor spatial resolution due to the finite size of the lens that makes up the imaging system and the consequent imposition of the underlying diffraction limits. The lost frequency components beyond the diffraction-limited cutoff make the obtained images blur. Currently there are one kind of image processing schemes referred to as super-resolution algorithms available for solving of this problem, including Bayesian analysis methods, set theoretic methods, and Fourier domain techniques. But an estimate of the blur model parameters is essential in these methods. If incorrect blur parameters are chosen then the super-resolution results will be wrong. This work presents an original solution to the blur parameters identification problem in infrared image super-resolution. A back-propagation(BP) neural network is used for the blur parameters identification. In this method, we consider the modulation transfer function (MTF) of a
苏秉华、金伟其、张楠
光电子技术电子技术应用遥感技术
红外,系统辨识,超分辨力,神经网络,刀口,MPMAP
infrared system identification super-resolution neural network knife-edge MPMAP
苏秉华,金伟其,张楠.用BP神经网络进行系统辨识的红外图像超分辨力复原方法[EB/OL].(2004-11-01)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200411-2.点此复制
评论