Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras
Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras
We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal{N}$ is never model complete if its direct integral decomposition contains $\mathrm{II}_1$ factors $\mathcal{M}$ such that $M_2(\mathcal{M})$ embeds into an ultrapower of $\mathcal{M}$. The proof in the case of $\mathrm{II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.
Ilijas Farah、David Jekel、Jennifer Pi
数学
Ilijas Farah,David Jekel,Jennifer Pi.Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras[EB/OL].(2025-06-30)[2025-07-16].https://arxiv.org/abs/2310.06197.点此复制
评论