|国家预印本平台
首页|Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras

Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras

Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras

来源:Arxiv_logoArxiv
英文摘要

We provide a complete characterization of theories of tracial von Neumann algebras that admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra $\mathcal{N}$ is never model complete if its direct integral decomposition contains $\mathrm{II}_1$ factors $\mathcal{M}$ such that $M_2(\mathcal{M})$ embeds into an ultrapower of $\mathcal{M}$. The proof in the case of $\mathrm{II}_1$ factors uses an explicit construction based on random matrices and quantum expanders.

Ilijas Farah、David Jekel、Jennifer Pi

10.1017/jsl.2025.10100

数学

Ilijas Farah,David Jekel,Jennifer Pi.Quantum Expanders and Quantifier Reduction for Tracial von Neumann Algebras[EB/OL].(2025-06-30)[2025-07-16].https://arxiv.org/abs/2310.06197.点此复制

评论