基于修正后矩阵分解的最优协方差DOA估计
针对传统来波方向(direction-of-arrival,DOA)估计在信号相干、低信噪比与噪声非均匀环境下性能差的问题,基于修正后的矩阵分解,提出一种利用凸优化的协方差矩阵最优DOA估计方法。修正后的矩阵分解方法,解相干的同时克服了孔径损失;然后,利用凸优化,重构出无噪声的协方差矩阵;最后,利用最小化搜索计算出DOA。仿真结果表明,所提算法与矩阵分解(matrix decomposition,MD)算法、基于L1范数的奇异值分解(L1-norm singular vector decomposition,L1-SVD)算法以及基于空间平滑的协方差秩最小化估计(spatial smoothing based covariance rank minimization,SS-CRM)算法比较,能更好地抑制非均匀噪声,且在低信噪比条件下,依然性能良好。
o solve the problems that the traditional direction-of-arrival(DOA) estimations have poor performance when processing coherent signals in the cases of low signal-to-noise ratio and non-uniform noise . This paper proposed a DOA method based on the modified matrix decomposition method, with the best covariance matrix by the convex optimization. The modified matrix decomposition method can deal with the extraction of the coherent sources, while, overcomes the aperture loss. Furthermore, the method reconstrtucted the noise free covariance matrix by the convex optimization. Finally, using minimization search to calculate DOA. The simulation results show that, comparing to the matrix decomposition (MD) algorithm, L1-norm singular vector decomposition(L1-SVD) algorithm and spatial smoothing based covariance rank minimization (SS-CRM) algorithm, the method suppress the non-uniform noise well and have good performance in low signal noise ratio (SNR) .
李翠然、申东、邸敬、蒋占军、马黎文
通信
OA估计凸优化矩阵分解非均匀噪声
李翠然,申东,邸敬,蒋占军,马黎文.基于修正后矩阵分解的最优协方差DOA估计[EB/OL].(2018-12-13)[2025-08-25].https://chinaxiv.org/abs/201812.00093.点此复制
评论